skip to main content


Search for: All records

Creators/Authors contains: "Galdies, Charles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Superoutbursts in WZ Sge-type dwarf novae (DNe) are characterized by both early superhumps and ordinary superhumps originating from the 2 : 1 and 3 : 1 resonances, respectively. However, some WZ Sge-type DNe show a superoutburst lacking early superhumps; it is not well established how these differ from superoutbursts with an early superhump phase. We report time-resolved photometric observations of the WZ Sge-type DN V627 Peg during its 2021 superoutburst. The detection of ordinary superhumps before the superoutburst peak highlights that this 2021 superoutburst of V627 Peg, like that in 2014, did not feature an early superhump phase. The duration of stage B superhumps was slightly longer in the 2010 superoutburst accompanied by early superhumps than that in the 2014 and 2021 superoutbursts, which lacked early superhumps. This result suggests that an accretion disk experiencing the 2 : 1 resonance may have a larger mass at the inner part of the disk and hence needs more time for the inner disk to become eccentric. The presence of a precursor outburst in the 2021 superoutburst suggests that the maximum disk radius should be smaller than that of the 2014 superoutburst, even though the duration of quiescence was longer than that before the 2021 superoutburst. This could be accomplished if the 2021 superoutburst was triggered as an inside-out outburst or if the mass transfer rate in quiescence changes by a factor of two, suggesting that the outburst mechanism and quiescence state of WZ Sge-type DNe may have more variety than ever thought.

     
    more » « less
  2. Abstract

    We present time-series photometry during the early decline phase of the extremely fast nova V1674 Herculis. The 2021 light curve showed periodic signals at 0.152921(3) days and 501.486(5) s, which we interpret as respectively the orbital and white dwarf spin periods in the underlying binary. We also detected a sideband signal at the difference frequency between these two clocks. During the first 15 days of outburst, the spin period appears to have increased by 0.014(1)%. This increase probably arose from the sudden loss of high-angular-momentum gas (“the nova explosion”) from the rotating, magnetic white dwarf. Both periodic signals appeared remarkably early in the outburst, which we attribute to the extreme speed with which the nova evolved (and became transparent to radiation from the inner binary). After that very fast initial period increase of 71 ms, the period subsequently decreased—at 182(18) ms yr−1in 2021, and 88(18) ms yr−1in 2022. These rates are ∼100× faster than typically seen in intermediate polars. This could be due to high accretion torques from very high mass-transfer rates, which might be common when low-mass donor stars are strongly irradiated by a nova outburst.

     
    more » « less
  3. null (Ed.)
    Abstract We report on photometric and spectroscopic observations and analysis of the 2019 superoutburst of TCP J21040470+4631129. This object showed a 9 mag superoutburst with early superhumps and ordinary superhumps, which are the features of WZ Sge-type dwarf novae. Five rebrightenings were observed after the main superoutburst. The spectra during the post-superoutburst stage showed Balmer, He i, and possible sodium doublet features. The mass ratio is derived as 0.0880(9) from the period of the superhump. During the third and fifth rebrightenings, growing superhumps and superoutbursts were observed, which have never been detected during a rebrightening phase among WZ Sge-type dwarf novae with multiple rebrightenings. To induce a superoutburst during the brightening phase, the accretion disk needs to have expanded beyond the 3 : 1 resonance radius of the system again after the main superoutburst. These peculiar phenomena can be explained by the enhanced viscosity and large radius of the accretion disk suggested by the higher luminosity and the presence of late-stage superhumps during the post-superoutburst stage, plus by more mass supply from the cool mass reservoir and/or from the secondary because of the enhanced mass transfer than those of other WZ Sge-type dwarf novae. 
    more » « less